Clinical Trial
Update 2015

Dr Sonia Davison
MBBS FRACP PhD
Women’s Health Research Program
Monash University
Jean Hailes for Women’s Health
Criteria for Inclusion

- Area of relevance / interest
- Big / novel study
- Big news for 2015
- Robust methodology
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>AMI</td>
<td>acute myocardial infarction</td>
</tr>
<tr>
<td>bd</td>
<td>twice daily administration</td>
</tr>
<tr>
<td>BMD</td>
<td>bone mineral density</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BSO</td>
<td>bilateral salpingo-oophorectomy</td>
</tr>
<tr>
<td>CEE</td>
<td>conjugated equine oestrogens</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>Cl</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CVA</td>
<td>stroke</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DHEA</td>
<td>dehydroepiandrosterone</td>
</tr>
<tr>
<td>F/U</td>
<td>follow-up</td>
</tr>
<tr>
<td>gp</td>
<td>group</td>
</tr>
<tr>
<td>HR</td>
<td>hazard ratio</td>
</tr>
<tr>
<td>hrs</td>
<td>hours</td>
</tr>
<tr>
<td>HRT</td>
<td>PM hormone therapy men</td>
</tr>
<tr>
<td>MPA</td>
<td>medroxyprogesterone acetate</td>
</tr>
<tr>
<td>n</td>
<td>number</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>P1NP</td>
<td>bone turnover marker</td>
</tr>
<tr>
<td>PreM</td>
<td>premenopausal</td>
</tr>
<tr>
<td>PM</td>
<td>postmenopausal</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>PV</td>
<td>vaginal administration</td>
</tr>
<tr>
<td>QOL</td>
<td>quality of life</td>
</tr>
<tr>
<td>RCT</td>
<td>randomised controlled trial</td>
</tr>
<tr>
<td>Rx</td>
<td>treatment</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>VMS</td>
<td>vasomotor symptoms</td>
</tr>
<tr>
<td>WHI</td>
<td>Women’s Health Initiative study</td>
</tr>
<tr>
<td>wks</td>
<td>weeks</td>
</tr>
<tr>
<td>yr</td>
<td>year</td>
</tr>
<tr>
<td>women</td>
<td></td>
</tr>
</tbody>
</table>
Levels of evidence

Oxford Centre for Evidence-based medicine:

1a – systematic review of RCTs
1b – large individual RCT (with narrow confidence interval)
2a – systematic review of cohort studies
2b – individual cohort study (or low quality RCT, e.g. <80% follow-up)
2c – ecological studies
3a – systematic review of case-control studies
3b – individual case-control study
4 – case-series
5 – expert opinion without explicit critical appraisal, or based on physiology, bench research or “first principles”
Estradiol-based postmenopausal hormone therapy and risk of cardiovascular and all-cause mortality.

489,105 PM ; HRT use from 1994-2009

Main oestrogen = oestradiol (oral or transdermal)
Mean age of initiation 52.2 yrs
• Oestrogen only – mean 3.9 yrs
• Oestrogen / progestogen – mean 4.5 yrs
‌ Use of any HRT (per 10,000 F/U yrs):
 ↓ 2-19 CHD deaths (18% ↓ in risk)
 ↓ 1-9 CVA deaths (18% ↓ in risk)
 ↓ 12-78 deaths from all cause mortality (12% ↓ in risk)
‌ No difference to findings if HRT initiated <60 or >60 yrs of age

Mikkola TS et al Menopause 2015. 22(9):976-83
Estradiol-based postmenopausal hormone therapy and risk of cardiovascular and all-cause mortality.

Mikkola TS et al Menopause 2015. 22(9):976-83
Does menopausal hormone therapy reduce myocardial infarction risk if initiated early after menopause? A population-based case-control study.

Stockholm Heart Epidemiology Program
347 PM, 40-62 yrs, past AMI
- 499 age-matched controls
- 292 ever-users of HRT (29% cases / 38% controls)

<table>
<thead>
<tr>
<th>Compared to never use of HRT:</th>
<th>Risk of AMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early initiation HRT (<60 yrs or within 10 yrs of menopause)</td>
<td>≣</td>
</tr>
<tr>
<td>Late initiation HRT</td>
<td>≣</td>
</tr>
<tr>
<td>HRT use ≥5yrs</td>
<td>≣</td>
</tr>
<tr>
<td>HRT use <5yrs</td>
<td>≣</td>
</tr>
</tbody>
</table>

Carrasquilla GD et al Menopause 2015;22(6);598-606
Hormone therapy after uterine cervical cancer treatment: a Swedish population-based study.

837 ♀, <45yrs at diagnosis of cervical cancer

- 257 ♀ (31%) BSO and / or radiotherapy
 - 67% had at least one script for HRT dispensed
 - Gradual ↓ in use up to 5yrs, to 39%
 - <40 yrs: HRT use 79% at 1yr; 45% after 5yrs

Everhof ÅH et al Menopause 2015; 22 (6); 633-9
Hormone therapy and risk of cardiovascular outcomes and mortality in women treated with statins.

40,958 ♀, 40-74 yrs

Prescribed statin between 2006-7
- F/U mean 4 yrs
- Statin use: 70% for primary prevention
- 7% users on HRT (2862 ♀); mean 61 yrs
 - 53% 50-64yrs
 - 31% 65-74yrs

<table>
<thead>
<tr>
<th></th>
<th>HRT users</th>
<th>Non-HRT users</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD deaths per 10,000 person yrs</td>
<td>N =5; HR 0.38 (95% CI 0.12-1.19)</td>
<td>N = 18</td>
</tr>
<tr>
<td>All cause mortality</td>
<td>N =33; HR 0.53 (95% CI 0.34-0.81)</td>
<td>N = 87</td>
</tr>
</tbody>
</table>

Berglind IA et al. Menopause 2015; 22(4):369-76
Menopause
Symptoms of depressed mood, disturbed sleep, and sexual problems in midlife women: cross-sectional data from the Study of Women's Health Across the Nation.

1716♀, mean 49.8yrs

- Depressed mood 17%
- Sleep problem 37%
- Any sexual problem 42%

All 3 problems: 5% (n=90)
- Lower household income
- Less educated
- Surgical menopause or late perimenopause
- General health = poor or fair
- More stressful life events
- Lower social support
VMS
Moderate to severe vasomotor and sexual symptoms remain problematic for women aged 60 to 65 years.

2020 PM ‍♀️, 40-65 yrs

Mod-severe VMS:
- 2.8% pre-menopausal
- 17.1% peri-menopausal
- 15.1% PM, 55-59yrs
- 6.5% PM, 60-65yrs

Prescription therapy for menopausal symptoms:
- 135 ‍♀️ (6.6%)
 - 120 HRT (5.9%)
 - 15 non-hormonal (0.7%)

Risk factors for moderate to severe vasomotor symptoms:
- Smoking, OR 1.6 (95% CI 1.1-2.3)
- BMI 25-29.9kg/m², OR 1.7 (95% CI 1.1-2.5)
- Tertiary education, OR 0.7 (95% CI 0.5-0.9)

Gartoulla P et al Menopause 2015; 22(7):694-701
Decreasing menopausal symptoms in women undertaking a web-based multi-modal lifestyle intervention: The Women's Wellness Program.

225 ♀, 40-65yrs (mean 50.9yrs)

- 12 week intervention (on-line independent / nurse consultant / on-line virtual nurse consultation)
- Healthy lifestyle behaviours (exercise / smoking / healthy eating etc)

All methods of intervention delivery:
- ↓ anxiety
- ↓ depression
- ↓ VMS
- ↓ sexual dysfunction

(benefits more pronounced in one-on-one group); all p<0.05

Anderson D et al Maturitas 2015; 81(1); 69-75
Does quitting smoking decrease the risk of midlife hot flashes? A longitudinal analysis.

761PM ♀, 45-54 yrs
F/U 7 yrs

- Former-smokers vs. smokers:
 - ↓ number / severity / frequency of flushes
 (OR 0.55 to 0.80)
- Non-smokers vs. Former and current smokers:
 - ↓ severity / frequency of flushes
 - ↓ symptoms in women who ceased smoking >5yrs ago
 (OR 0.36 to 0.63)
Facilitating lifestyle changes to manage menopausal symptoms in women with breast cancer: a randomized controlled pilot trial of The Pink Women's Wellness Program.

55 ♀, 45-60yrs

- breast cancer
- 1 mod-severe menopausal symptom
- Intervention or control gp – 12 wks
- Intervention = clinical consultations and health education program

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somatic symptoms</td>
<td>↓</td>
<td>⇨</td>
</tr>
<tr>
<td>VMS</td>
<td>↓</td>
<td>⇨</td>
</tr>
<tr>
<td>Sexual dysfunction</td>
<td>↓</td>
<td>⇨</td>
</tr>
<tr>
<td>Physical and functional wellbeing</td>
<td>↑</td>
<td>⇨</td>
</tr>
</tbody>
</table>
Cancer
Dietary patterns and breast cancer risk: a study in 2 cohorts.

4400 ♂

Canadian Study of Diet, Lifestyle and Health and National Breast Screening study

• 1097 breast cancer / 3320 controls
• Average ages for groups 58-67 yrs

<table>
<thead>
<tr>
<th>Diet</th>
<th>Risk of breast cancer HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy (vegetables and legumes)</td>
<td>0.73 (0.58-0.91)</td>
</tr>
<tr>
<td>Ethnic (rice, spinach, fish, tofu, liver, eggs, salted and dried meat)</td>
<td>No relationship</td>
</tr>
<tr>
<td>Meat and potatoes (red meat and potatoes)</td>
<td>Trend only: 1.26 (0.92-1.73)</td>
</tr>
</tbody>
</table>
Oral bisphosphonate use and risk of postmenopausal endometrial cancer.

89,000 ♂; 50-79 yrs in WHI

- 39,000 in RCT / 50,000 in observational study
- Median 12.5 yr F/U
- Bisphosphonate – alendronate 90%
- 1123 cases of endometrial cancer

- Ever use of bisphosphonates in 10% of ♂:
 - endometrial carcinoma (HR 0.80; 95% CI 0.64-1.00; p=0.05)

Hormone therapy and young-onset breast cancer

3000

- Two Sister Study: breast cancer diagnosis <50yrs vs. controls
 - Recruited 2008-2010
 - Mean age 47.3 yrs

<table>
<thead>
<tr>
<th>HRT use</th>
<th>Breast cancer n = 1419</th>
<th>Controls n = 1665</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ever use of HRT</td>
<td>7 %</td>
<td>11%</td>
</tr>
</tbody>
</table>

- Oestrogen + progestogen HRT: ↔ Breast cancer risk
- Oestrogen only HRT: ↓ Breast cancer risk; OR 0.58 (95% CI 0.34-0.99)

Bone
A randomized, double-blind, placebo-controlled study to evaluate the effects of alendronate on bone mineral density and bone remodelling in perimenopausal women with low bone mineral density.

40 ♂, perimenopausal

- Mean age 49.3yrs
- T score <-1.0 at lumbar spine / femoral neck or total hip
 - Alendronate 70mg wkly vs. Placebo (+2800 IU vitamin D3)
 - 12 months

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alendronate</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar spine BMD</td>
<td>↑ 3.7%</td>
<td>↓ 3.3%</td>
</tr>
<tr>
<td>Femoral neck BMD</td>
<td>↑ 2.1%</td>
<td>↓ 1.9%</td>
</tr>
<tr>
<td>ALP</td>
<td>↓ 38%</td>
<td>↑ 3%</td>
</tr>
<tr>
<td>P1NP</td>
<td>↓ 27%</td>
<td>↑ 21%</td>
</tr>
</tbody>
</table>

P<0.05 for all differences

Long-term follow-up of bone density in women with primary ovarian insufficiency.

72 PM ; mean 34.1 yrs (SD 6.7), F/U 8yrs

- **BMD at baseline:**
 - Lumbar spine T score mean -1.03 (SD 1.39)
 - 18% - osteoporosis
 - 28% - osteopaenia
 - Femoral neck T score mean -0.29 (SD 1.09)
 - 1.4% - osteoporosis
 - 23% - osteopaenia

- Hormone treatments:
 - CEE + MPA
 - 17β oestradiol +norethisterone
 - ethinyl oestradiol + levonorgestrel

- **No change** in overall BMD after 8 yrs F/U

Benetti-Pinto CL et al Menopause. 2015 22(9):946-9
Indirect comparison of teriparatide, denosumab, and oral bisphosphonates for the prevention of vertebral and nonvertebral fractures in postmenopausal women with osteoporosis.

LEVEL 1

Meta-analysis

15 studies, 1-4 yrs duration

- **Vertebral fracture ↓**: Teriparatide + denosumab > alendronate + risedronate
- **Non-vertebral fracture ↓**: All agents effective
- **Hip fracture ↓**: denosumab, alendronate, risedronate
- **Upper arm fracture ↓**: risedronate

Zhang L et al Menopause. 2015;22(9): 1021-5
Indirect comparison of teriparatide, denosumab, and oral bisphosphonates for the prevention of vertebral and nonvertebral fractures in postmenopausal women with osteoporosis.

FIG. 2. Efficacy of interventions, versus placebo, for reducing vertebral fracture. RR, risk ratio.

Zhang L et al Menopause. 2015;22(9): 1021-5
Genito-urinary
Sexual function after fractional microablative CO\(_2\) laser in women with vulvovaginal atrophy.

77 PM †, mean 60.6 ± 6.2 yrs

- 3 fractional microablative CO\(_2\) laser Rx in 12 wks

Theory: connective tissue remodelling with production of new collagen and elastic fibres

Results:

- ↑ sexual function scores (p<0.01)
- ↑ satisfaction with sexual life (p<0.01)
- 85% of † not sexually active at baseline resumed sexual function at 12 wks
- Improved physical and mental domains of QOL evaluations (p<0.01)

Prasterone has parallel beneficial effects on the main symptoms of vulvovaginal atrophy: 52-week open-label study.

521 ♀, 43-75 yrs (median 58yrs)

- Open-label
- Prasterone (DHEA) 0.5% (6.5mg) daily PV for 12 months
- Changes from baseline to 12 months:
 - Parabasal cells 55% to 13%
 - Superficial cells 2% to 9.4%
 - Vaginal pH 6.2 to 5.1
 - Dyspareunia ↓ 66%
 - Vaginal secretions / epithelial integrity / thickness

all p<0.001

Brain
Grandparenting predicts late-life cognition: Results from the Women's Healthy Ageing Project.

Mean age 69.6yrs
Average 12.9yrs education
87% had grandchildren
72% minded grandchildren (average 3.2 children)
 0.9yrs younger
 More likely to have ≥12 yrs education
 Higher scores in **executive function**
 Higher performance in those minding children 1 day per wk vs. >1 day per wk

P<0.05 for difference between groups

Burn K, Szoeke C. Maturitas 2015; 81(2); 317-22
Effects of a soy-based dietary supplement compared with low-dose hormone therapy on the urogenital system: a randomized, double-blind, controlled clinical trial.

60 PM ♀; 40-60 yrs

- 3 groups, 16 wks Rx:
 - Soy dietary supplement (90mg isoflavone)
 - Low dose HRT (1mg oestradiol + 0.5mg norethisterone)
 - Placebo

- Vaginal dryness ↓:
 - soy and HRT gps (p=0.04)

- Vaginal pH ↓ / maturation value ↑:
 - HRT gp only (p<0.01)

- No change in endometrial thickness for any gp

Carmignani LO et al Menopause 2015; 22(7):741-9
Metabolism
Metformin for overweight women at midlife: a double-blind, randomized, controlled trial.

118 ♂, 35-65yrs (mean 53yrs)
BMI 30-40kg/m2 or waist circumference >88cm
Metformin 850mg bd or placebo – 26 wks

- ↓ HbA1C (-0.1%)
- ↓ Fasting insulin (-1.0pmol/L)
- ↓ BMI (mean change 1kg/m2; 95% CI 1.37 to -0.62) (all P<0.05)
- ↔ Waist circumference / fasting glucose / lipid profile

Worsley R et al Climacteric 2015; 18(2); 270-7
And finally...
Effects of caffeine on the human circadian clock in vivo and in vitro.

5 subjects: 3 ♀ , 2 ♂
Mean age 24 yrs
Double-blind placebo controlled study, 49 days
• Dim light / dim light with caffeine / bright light / bright light with caffeine – prior to bedtime
• Caffeine dose equivalent to double espresso 3 hrs before bedtime
• Background: caffeine alters circadian clock in red bread mould, green algae, fruit flies and sea snails

Results:
• Caffeine - 40 minute delay of circadian melatonin rhythm – half the effect of being exposed to bright light
• Caffeine increased cyclic AMP levels – a core component of the cellular circadian clock
Clinical Trial Update 2015

Dr Sonia Davison
MBBS FRACP PhD
Women’s Health Research Program
Monash University
Jean Hailes for Women’s Health